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We propose a formulation to obtain the line shape of a magnetic response with dissipative effects that
directly reflects the nature of the environment. Making use of the fact that the time evolution of a response
function is described by the same equation as the reduced density operator, we formulate a full description of
the complex susceptibility. We describe the dynamics using the equation of motion for the reduced density
operator, including the term for the initial correlation between the system and a thermal bath. In this formalism,
we treat the full description of non-Markovian dynamics including the initial correlation. We present an explicit
and compact formula up to the second order of cumulants, which can be applied in a straightforward way to
multiple-spin systems. We also take into account the frequency shift by the system-bath interaction. We study
the dependence of the line shape on the type of interaction between the system and the thermal bath. We
demonstrate that the present formalism is a powerful tool for investigating various kinds of systems and we
show how it is applied to spin systems, including those with up to three spins. We distinguish the contributions
of the initial correlation and the frequency shift and make clear the role of each contribution in the Ohmic
coupling spectral function. As examples of applications to multispin systems, we obtain the dependence of the
line shape on the spatial orientation in relation to the direction of the static field �Nagata-Tazuke effect�,
including the effects of the thermal environment, in a two-spin system, along with the dependence on the
arrangement of a triangle in a three-spin system.
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I. INTRODUCTION

Recently, the quantum dynamics of microscopic systems
have been observed due to the development of experimental
methods. For example, the quantum mechanical magnetiza-
tion processes of single molecular magnets �SMM� have at-
tracted much interest. Various new aspects of quantum ef-
fects are seen in such systems �1–4�.

To investigate the energy level structures of SMM mol-
ecules, electron spin resonance �ESR� experiments have been
conducted for Mn12 �5�. The quantum tunneling effect was
monitored by a proton NMR in Fe8 �6,7� and the dynamics of
each magnetic atom was studied using NMR on Mn atoms in
Mn12 �8�. The temperature dependence of the ESR signal
was also studied in V15 �9�.

Complex susceptibility has been studied for a long time
and the effects of the exchange and/or dipolar interactions
between the numerous constituent spins have been clarified
�10–12�. In order to evaluate the ESR spectra for spatially
structured systems, theoretical approaches for obtaining line
shapes from a microscopic viewpoint have recently been
proposed by focusing on the effects of the interactions be-
tween spins using direct numerical evaluations of the Kubo
formula �13–16� along with a field theoretical approach
�17,18�. In these previous works, the linewidth comes from
the interactions between the spins, which are described by
the Hamiltonian system and the line shape is given by an
ensemble of delta functions. The effects of contact with the
thermal bath have not been studied, even though the thermal
effect has attracted interest in studies of microscopic pro-
cesses. Thus, an approach becomes necessary to introduce

the effects of the surroundings, which cause the temperature-
dependent width of each resonant peak in the complex sus-
ceptibility.

In order to take these effects into account, we have to
study an extended system in contact with a thermal bath and
consider the dynamical effects from the thermal bath. For
this purpose, the time evolution of the reduced density op-
erator is usually studied, which is obtained by projecting out
the degrees of freedom of the thermal bath. A standard for-
malism has been established for the equation of motion for
the reduced density operator �19–22�, which is generally
called the quantum master equation. This formalism has been
successfully applied to various fields. For example, the natu-
ral linewidth of a two-level �spin� system has been estimated
�22–24� and systems with interacting spins �25� and nonlin-
ear spin relaxation �26� have been studied. A rapid thermal
bath correlation was assumed in these studies and analyses
were therefore made in the Markovian limit.

However, the effect of the finite correlation time of the
thermal bath becomes important when we are interested in
phenomena where the time scale of the system is comparable
to that of the thermal bath. Then, we have to take into ac-
count the time-correlation function of the thermal bath and
the initial condition of the density operator in the above-
mentioned master equation. In the equilibrium state of the
total system, which consists of the system, the bath, and the
interaction between them, the density operator is not given
by a decoupled form. Therefore, we need to take the contri-
bution from it into account, even though this effect has often
been ignored by assuming a factorized form of the density
operator. In the regression theorem �27�, we obtain the time
evolution for the average of a quantity for the factorized
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initial condition and estimate the correlation function from it,
which is good in the Markovian limit �28–30�. However, for
short time phenomena, we need to estimate the correlation
function of the quantity in a non-Markovian evolution treat-
ing the initial correlation correctly �31–35�. For example,
Tanimura �34� obtained an exact hierarchical formulation
with a functional integral for the spectral distribution of an
Ohmic form with a Lorentzian cutoff. Breuer and Petruc-
cione �33� studied the effects of the initial correlation on the
dynamics of a spin-boson system and pointed out the impor-
tance of their contribution. However, they did not obtain an
explicit form for the correlation function or the complex sus-
ceptibility as a function of the frequency.

In the present paper, we provide a formulation for the
complex susceptibility by extending the Nakajima-Zwanzig
type of master equation without discarding the non-
Markovian effect and the initial correlation. We derive an
equation for the motion of the response function. Then we
consider the equation of motion of the quantity �A ,Weq�,
where Weq is the initial density operator for the total system
and A is a system operator. We include the initial correlation
between the relevant system and the bath, which is called the
“inhomogeneous term” of the master equation. Since the
equation is described by a time convolution �TC� type of
equation for the non-Markovian dynamics, the Laplace trans-
formation can be explicitly evaluated. Here we obtain a con-
crete form of the complex susceptibility. It should be noted
that the obtained formula is easily evaluated, even in inter-
acting spins, by a concrete numerical calculation. Moreover,
by using the Hilbert-Schmidt �H-S� representation, the for-
mula is compactly expressed. In the present formulation, we
can include the frequency shift due to a system-bath interac-
tion, which comes from the imaginary part of the memory
term expressed by the principal value integral of the correla-
tion function of the thermal bath operators. While we present
the formula up to the second order of cumulants, it could
easily be extended to the higher orders.

We apply the obtained formula to spin systems linearly
interacting with a bosonic bath. For a single spin system, we
study the dependence of the line shape on the type of system-
bath coupling, e.g., the case of pure dephasing, in which only
the diagonal component of the spin interacted with the bath,
and the case of longitudinal relaxation, in which the off-
diagonal components interacted with the bath �the nonadia-
batic interaction�. We find that the initial correlation and the
frequency shift due to the memory kernel are more dominant
in the pure dephasing case than in the nonadiabatic interac-
tion case. Owing to the usage of the H-S representation, we
could extend our formalism to multiple-spin systems in a
straightforward way. For a linearly coupled spin chain, the
dependence of the peak shift on the angle between the chain
and the static field has been studied as the Nagata-Tazuke
effect �36�. As an example of an application to multispin
systems, we study the dependence including the effects of
the thermal environment. We also study the relationship be-
tween the line shape and the geometrical configuration in a
three-spin system on a triangle.

This paper is organized as follows: we provide a general
formulation of susceptibility in Sec. II. The application of the
obtained formula to the linear spin-boson model is given in

Sec. III. Discussions and concluding remarks are given in
Sec. IV.

II. FORMULATION

In this section, we present a formulation of the complex
susceptibility of a system in contact with a thermal bath.
Generally, the linear-response theory gives the complex sus-
ceptibility in the form �19�

������ = lim
�→+0

i

�
�

0

	

dte−i�t−�t Tr�B̂��t�,Â��
eq, �1�

which describes the response of the operator B̂� to an oscil-

lating external field conjugate to the operator Â� with the
frequency �. Here, � and � are components of the operators

B̂ and Â, respectively, and 
eq denotes an equilibrium state. If
we consider the response in a pure quantum state, the time

evolution of B̂��t� is given by eiHStBe−iHSt and 
eq is
e−�HS /ZS, where HS is the Hamiltonian of the system and ZS
is the partition function of the system at a temperature T
��=1 /kBT�. On the other hand, to analyze the complex sus-
ceptibility under dissipation, we need to describe the time

evolution of B̂��t� by taking into account the interaction be-
tween the relevant system and a thermal bath.

As will be shown in the next section, the dynamics in
contact with a thermal bath is not only given by the quantum
dynamics of the system, but is also affected by memory ef-
fects inherent in the contact with the thermal bath. The
memory effect is often treated in the so-called Markovian
approximation �37�. This approximation is often used to
study the time evolution of the reduced density operator of a
system, which leads to the quantum master equation. As long
as the equation has the so-called Lindblad-Kossakowski-
Sudarshan form �37� as in the field of quantum optics, the
density operator is positive definite. However, it has been
pointed out that the Markovian approximation may violate
the positivity of the density operator. In particular, in a spin-
boson model, the breakdown of the positivity has been ex-
plicitly reported. A method to amend this breakdown has
been proposed using a kind of slippage supplement in the
initial conditions �38–40�. Using the Markovian time evolu-
tion with this supplement enables us to simulate the time
evolution of non-Markovian time evolution, but its validity is
limited in a time region larger than the correlation time of the
thermal bath �39,40�.

Since experimental development has accelerated in recent
years, we need to formulate a line shape theory that can
correctly describe the non-Markovian effect, including the
region of the correlation time of the thermal bath. Moreover,
the term for the system-bath correlation at an initial time in
the equation for the time evolution of the density operator
has often been ignored. However, the importance of this term
has been pointed for obtaining a correct description of the
dynamics �38,41�. Finally, we also need a compact formula
that can be evaluated by a concrete numerical method. For
this purpose, we will present a straightforward way to derive
a complex susceptibility that includes the initial correlation
as well as the non-Markovian effect.
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A. Formula of susceptibility

We suppose that a relevant system S is in contact with a
thermal bath R and that the whole system is in an equilibrium
state with temperature T. Defining the density operator of the
whole system as Weq, the linear-response theory is extended
to give the susceptibility ������ as

������ = lim
�→+0

i

�
�

0

	

dte−i�t−�t TrS+R�B̂��t�,Â��Weq, �2�

where TrS+R denotes the trace operation for the whole sys-
tem. When we denote HS, HR, HSR as the Hamiltonians of
the systems S, R, and the system-bath interaction, the time

evolution of an arbitrary operator for the relevant system Ô
is determined by the Heisenberg equation,

d

dt
Ô�t� =

i

�
�HS + HR + HSR,Ô�t�� � iLÔ�t� . �3�

Defining the total Hamiltonian as H �=HS+HR+HSR�, and
using the relation as

TrS+R�B̂��t�,Â��Weq = TrS+R�eiLtB̂�,Â��Weq

= TrS+R�ei/�HtB̂�e−i/�Ht,Â��Weq

= TrS+R�B̂�e−i/�HtÂ�Weqei/�Ht

− B̂�e−i/�HtWeqÂ�e
i/�Ht�

= TrS+RB̂��e−iLt�Â�,Weq�� , �4�

we can rewrite Eq. �2� in the form

������ = lim
�→+0

i

�
�

0

	

dte−i�t−�t TrS+R B̂��e−iLt�Â�,Weq��

= lim
�→+0

i

�
�

0

	

dte−i�t−�t TrS B̂�
A�
�t� , �5�

with


A�
�t� � TrR e−iLt�Â�,Weq� , �6�

where TrR denotes the trace operation over the thermal bath.
With the Fourier-Laplace transform f���=	0

	dte−i�t f�t�,
where f�t� is an appropriate function, we find that the sus-
ceptibility ������ is given by

������ =
i

�
TrS B̂�
A�

��� = ���� ��� − i���� ��� . �7�

The above formulation shows that the procedure to obtain
the complex susceptibility reduces to obtaining 
A�

���. As
shown in Appendix A, the time evolution of 
A�

�t� is given in
a form of a “master” equation by using the projection opera-
tor technique. Here, we define the projection operator to be
P=
R TrR. Up to the second order of the system-bath inter-
action HSR, we have

d

dt

A�

�t� = −
i

�
�HS,
A�

�t�� + �
t0

t

d�2�t − ��
A�
��� +�2�t� ,

�8�

where the kernel 2�t� and the inhomogeneous term �2�t�
are given by

2�t − �� = TrR�− iL1�e−iL0�t−��Q�− iL1�
R �9�

and

�2�t� = TrR�− iL1�e−iL0tQ
Â�,− 
0�
0

�

d�H1�− i���� ,

�10�

respectively. In Eqs. �9� and �10�, we used the following

definitions: LkÔ= 1
� �Hk ,Ô�, H0=HS+HR, and H1�HSR.

Because the whole system is assumed to be in an equilibrium
state, we have to take into account the contribution of the
initial correlation between the system and the thermal bath,
which is represented by the inhomogeneous term �2�t�.

From Eqs. �7� and �8�, the susceptibility ������ is given
by

������ =
i

�
TrS B̂�

1

i� + iLS −2���
�
A�

�0� +�2���� ,

�11�

where we define iLSÔ= i
� �HS ,Ô� with an arbitrary operator

Ô. Our remaining task is to obtain 2��� and �2���. For
this purpose, we give concrete expressions for 2�t� and
�2�t� in the next subsection.

B. Concrete expressions for �2(t) and �2(t)

For simplicity, we consider the case in which the interac-
tion between the system and the thermal bath is given in the
form

H1 = HSR � �X̂Ŷ , �12�

with the system operator X̂ and the thermal-bath operator Ŷ.
In this form, the second and third terms in Eq. �8� are given
by

�
0

t

d�2�t − ��
A�
���

= �−
i

�
2�

0

t

d� TrR�H1,�H1�− �t − ���,e−iL0�t−��
A�
�����

= − �
0

t

d����t − ��X̂X̂�− �t − ����e−iLS�t−��
A�
����

−��t − ��X̂�e−iLS�t−��
A�
����X̂�− �t − ���

−��− �t − ���X̂�− �t − ����e−iLS�t−��
A�
����X̂

+��− �t − ����e−iLS�t−��
A�
����X̂�− �t − ���X̂� �13�

and
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�2�t� = �−
i

�
TrB�H1,
Â��− t�,− 
A�

0

�

d�X̂�− i�� − t���
= i�

0

�

d���− i�� − t���X̂Â��− t�
AX̂�− i�� − t�

− X̂
AX̂�− i�� − t�Â��− t�� − �Â��− t�
AX̂�− i�� − t�X̂

− 
AX̂�− i�� − t�Â��− t�X̂�� , �14�

respectively. Here, we assumed that �Ŷ�t��=0 and we used
Eq. �A14� and definitions 
A� 1

ZA
e−�HA with ZA=TrAe−�HA

and

��t� � TrR 
RŶ�t�Ŷ � �Ŷ�t�Ŷ� . �15�

It might be convenient to use the eigenstates of an unper-
turbed relevant system to obtain the matrix elements of 
A�t�
in the master equation, Eq. �8�. We denote the eigenstates of
the relevant system �l� and �m� for the energy eigenvalues as
El and Em. The �l ,m� component of 2�t−��
A�

��� is given
by

�l�2�t − ��
A�
����m�

= − �
k,n

���t − ��X̂l,kX̂�− �t − ���k,n�e−iLS�t−��
A�
����n,m

−��t − ��X̂l,k�e−iLS�t−��
A�
����k,nX̂�− �t − ���n,m

−��− �t − ���X̂�− �t − ���l,k�e−iLS�t−��
A�
����k,nX̂n,m

+��− �t − ����e−iLS�t−��
A�
����l,kX̂�− �t − ���k,nX̂n,m� .

�16�

We can obtain the elements for �2�t� in a similar way. In
order to evaluate the susceptibility, Eq. �11�, we need to ob-
tain the Fourier-Laplace transform of each element and solve
the simultaneous equations for Eq. �8�. We can express the
equation by making use of the Hilbert-Schmidt �or Liouville�
space, which we show in the next subsection.

C. Transformation to Hilbert-Schmidt space

In order to evaluate the susceptibility, Eq. �11�, it is con-
venient to transform operators of the relevant system S into
vectors that construct the H-S space. This is because the
Liouville operators in the Hilbert space are written as a su-
permatrix in the H-S space, which makes the evaluations

easier. Defining a scalar product between operators Ô and V̂i

as �V̂i ,Ô�=Tr V̂i
†Ô, the transformation from the Hilbert

space to the H-S space is done by expanding an arbitrary

operator Ô in the Hilbert space with a set of orthonormal

operators V̂i as

Ô = �
i

V̂i�V̂i,Ô� , �17�

where the orthonormal condition of V̂i is written as �V̂i , V̂ j�
=�i,j. We can transform an operator in the Hilbert space to a

vector in the H-S space with the set of �V̂i ,Ô�. In the case

where an operator Ô is written as an N-dimensional matrix,
the corresponding vector in the H-S space has N2 elements.

Multiplication operations on a density operator in the Hil-
bert space are transformed to a supermatrix in the H-S space:

when the arbitrary operators Ô1 and Ô2
† are multiplied by the

density operator 
 as Ô1
Ô2
†, the product is transformed into

the H-S space as

Ô1
Ô2
† → M

�


� , �18�

where the supermatrix M
�

is symbolically expressed as

M
�

= M1 � M2
�. �19�

Here M1 and M2 correspond to matrices of the operators

Ô1 and Ô2, � denotes the Kornecker product, and � denotes
the complex conjugate operation. When the density opera-
tor is written in an N�N-dimensional matrix, 
�A�

�t� is

an N2-dimensional vector and M
�

2
�t� is an N2�N2-

dimensional matrix.
Using Eqs. �18� and �19�, we obtain the transformation of

Eq. �8� into the H-S space as

d

dt

�A�

�t� = −
i

�
M
�

S
�A�
�t� + �

t0

t

d�M
�

2
�t − ��
�A�

��� +�� 2�t� ,

�20�

which gives the susceptibility in a more straightforward way
than using Eq. �16�, since the kernel, 2�t� is written in the
H-S space as a matrix

M
�

2
�t� = −��t���X̂X̂�− t�e−i/�HSt� � �e−i/�HSt�� − �X̂e−i/�HSt�

� �X̂�− t�†e−i/�HSt��� +��− t���X̂�− t�e−i/�HSt�

� �X̂†e−i/�HSt�� − e−i/�HSt
� �X̂†X̂�− t�†e−i/�HSt��� .

�21�

The inhomogeneous term in the H-S space is given by

�� 2�t� = i�
0

�

d���− i�� − t���X̂Â��− t�� � �X̂�i�� − t��� − �X̂�

� �Â��− t�X̂�i�� − t��� − ��Â��− t�� � �X̂X̂�i�� − t���

− 1 � �X̂Â��− t�X̂�i�� − t�����
�A, �22�

which is an N2-dimensional vector for the N�N-dimensional
density operator.

The i�n ,m�th component of Eq. �20� is expressed by
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d

dt

�A�

�t�i�n,m� = − 
 i

�
M
�

S
�A�
�t��

i�n,m�

+ �
0

t

d�M
�

2
�t − ��i�n,m�,j�n�,m��
�A�

��� j�n�,m��

+�� 2�t�i�n,m�, �23�

where i�n ,m�= �n−1�N+m with n ,m=1,2 , . . . ,N. It should
be noted that the Fourier-Laplace transform of the memory
kernel in Eq. �23� is given by

�
0

	

dte−i�t�
0

t

d�M
�

2
�t − ��i�n,m�,j�n�,m��
�A�

��� j�n�,m��

= M
�

2
���i�n,m�,j�n�,m��
�A�

��� j�n�,m��, �24�

and we have

i�
�A�
��� − 
�A�

�0� = −
i

�
M
�

S
�A�
��� + M

�

2
���
�A�

���

+�� 2��� . �25�

Thus, we have


�A�
��� = M

�

��
�A�
�0� +�� 2���� , �26�

with

M
�

� = �i� +
i

�
M
�

S − M
�

2
���−1

, �27�

which corresponds to �i�+ iLS−2����−1 in Eq. �11�. All of

the matrix elements of M
�

� are given in an explicit way, as
will be shown below. The complex susceptibility in the H-S
space is given in the form

������ =
i

�
�B̂��,M

�

��
�A�
�0� +�� 2����� . �28�

D. Concrete form of M
�

�2
[�]

Now we obtain the matrix elements of M
�

2
��� on the

basis of the eigenstates of the relevant system,

M
�

2
���i�n,m�,j�n�,m�� = − �

0

	

dte−i�t��t�
�
k=1

N

Xn,kXk,n�e
−i��k−�m�t�m,m� + Xn,n�e

−i��n�−�m�tXm,m�
� �

+ �
0

	

dte−i�t��− t�
Xn,n�e
−i��n−�m��tXm,m�

� + �
k=1

N

Xm,k
� Xk,m�

� e−i��n−�k�t�n,n�� , �29�

with the eigenfrequency �l�El /�. A more explicit expression is obtained by introducing the spectrum of the thermal bath as

J��� = �
−	

	

dte−i�t��t� . �30�

Using the spectrum,

M
�

2
���i�n,m�,j�n�,m�� = −

1

2�
�

−	

	

d���
�
k=1

N

Xn,kXk,n��m,m��p�� + �� + �km� + Xn,n�Xm,m�
� �p�� + �� + �n�m��J����

− 
�
k=1

N

Xm,k
� Xk,m�

� �n,n��p�� + �� + �nk� + Xn,n�Xm,m�
� �p�� + �� + �nm���J�− ���� , �31�

where we define �km=�k−�m and use the following relation:

lim
�→+0

�
0

	

dte−i�t−�t = ����� − i�
1

�
� �p��� . �32�

The terms of the principal value represent the frequency shift
that results from the system-bath interaction. While these
terms have often been neglected, we can take them into ac-
count in the present formalism.

E. Concrete form of �� 2[�]

The inhomogeneous term, Eq. �14�, is simply written in
the H-S space by the multiplication of a matrix and the H-S
vector of 
A,

�� 2�t� � M
�

�� 2
�t�
�A, �33�

where
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M
�

�� 2
�t�i�n,m�,j�n�,m�� = i�

0

�

d���− i�� − t���
k

N

Xn,kA�k,n�Xm,m�
� e−i�kn�tei�t+i����mm� − Xn,n��

k

N

A�m,k
� Xk,m�

� ei�mktei�t+i����km�

− �A�n,n�e
−i�nn�t�

k

N

Xm,k
� Xk,m�

� ei�t+i����km� − �n,n��
k,l

N

ei�kltXm,k
� A�k,l

� ei�t+i����lm�Xl,m�
� �� . �34�

The Fourier-Laplace transform of the inhomogeneous term M
�

�� 2
�t� is given as

M
�

�� 2
���i�n,m�,j�n�,m�� �

i

2�
�

−	

	

d����
k

N

Xn,kA�k,n�Xm,m�
� �p��� + �kn� − �mm���i��� + �mm�� − Xn,n��

k

N

A�m,k
� Xk,m�

�

��p��� − �mm���i��� + �km�� − �A�n,n��
k

N

Xm,k
� Xk,m�

� �p��� + �nn� − �km���i��� + �km��

− �n,n��
k,l

N

Xm,k
� A�k,l

� Xl,m�
� �p��� − �kl − �lm���i��� + �lm���� , �35�

where we define �i��� as

�
0

�

d�e−��� =
1 − e−���

�
� �i��� . �36�

The complex susceptibility, Eq. �28�, is now written in an
explicit form, which can be applied to an arbitrary type of
thermal bath by specifying J���. We will show a few ex-
amples of baths in the next subsection.

F. Bath

When analyzing the relaxation phenomena of a relevant
system, we often introduce a thermal bath that consists of an
infinite number of bosons �42–44� or spins �45�. This section
discusses procedures to obtain the spectra J��� for a bosonic
bath.

We use a bosonic bath for the relaxation phenomena
caused by phonons in a medium or photons in a cavity. The
Hamiltonian for the boson system is written as

HR = �
�

���b�
†b�, �37�

where b� �b�
†� denotes an annihilation �creation� operator for

the �th mode of a boson. As an example, we will consider a
case in which the contribution to H1, Eq. �12�, from the bath
is given by

Ŷ � �
�

g��b�
† + b�� . �38�

Then, the correlation function �Ŷ�t�Ŷ� for the bath is written
as

��t� = �
�

g�
2��b�b�

†�e−i��t + �b�
†b��ei��t� , �39�

where g� is the coupling constant between the relevant sys-
tem and the �th mode of the boson. In order to evaluate the

correlation function of the thermal bath, we need to intro-
duce a coupling spectral function I��� as

I��� = �
�

g�
2��� − ��� . �40�

We can rewrite the weighted summation for an arbitrary
function f���� in the following form:

�
�

g�
2 f���� = �

0

	

d��
�

g�
2��� − ���f��� = �

0

	

d�I���f��� .

�41�

Using Eq. �40�, ��t� is rewritten as

��t� = �
0

	

d��I������n���� + 1�e−i��t + n����ei��t� ,

�42�

where n��� is the boson distribution function given by
n���=1 /e���−1. The spectrum of the thermal bath is ob-
tained in the form

J��� = �
−	

	

dtei�t��t�

= I����n��� + 1����� + I���n�����− �� , �43�

where ���� denotes the step function.

III. APPLICATIONS

We are now in a position to apply the formalism presented
in the previous section to the relaxation phenomena in a spin
system. First, we evaluate the spectral line shape of a system
where a single spin interacts with a bosonic bath. Although
such a system is trivial, the evaluation shows the concrete
procedure, which is essentially the same as in multiple-spin
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systems. Next, we demonstrate the Nagata-Tazuke effect for
two- and three-spin systems showing the dependence of the
line shape on the angle between the spatial configuration and
the direction of the static applied field. We include the initial
correlation and the frequency shift of the line shapes.

A. Spin-boson model

Suppose that a spin �S= 1
2 � linearly interacts with a ther-

mal bath that consists of bosons. The Hamiltonian of the
relevant system is written as

HS = ��0Sz, �44�

and the interaction operator X̂ in Eq. �12� is given by

X̂ � aSx + cSz, �45�

where Sm , �m=x ,y ,z� corresponds to the x, y, and z compo-
nents of the relevant spin. In the following, we set a=sin �

and c=cos �, since the generality is not lost when a is a real
number. We control the types of relaxation by the value of �:
the case of �=0 �a=0,c=1� describes the pure dephasing
phenomena of the spin. For other cases of ��0, we can
include the longitudinal relaxation in the transverse relax-
ation of the spin.

Equation �27� is now given as follows: the second term is
written as

i

�
M
�

S =
i

�
�HS � 1 − 1 � HS

�� =�
0 0 0 0

0 i�0 0 0

0 0 − i�0 0

0 0 0 0
� .

�46�

We can evaluate the third term of Eq. �27� concretely by
using Eq. �31� as

M
�

2
��� = −

1

4�
�a�2�1��,�0� − ac�2Fs−��,�0� + �3��,0�� − a�c�2F+��,�0� − �3��,0�� − �a�2�1��,�0�
− a�c�4−��,�0� �a�2�4+��,0� + 2c2�4−��,�0� − a�2�4+��,0� a�c�4−��,�0�
− ac�4+��,�0� − a2�4+��,0� �a�2�4+��,0� + 2c2�4+��,�0� ac�4+��,�0�
− ��a�2�2��,�0�� ac�2F−��,�0� − �3��,0�� a�c�2Fs+��,�0� + �3��,0�� �a�2�2��,�0�

� , �47�

where

�1��,�0� � F+��,�0� + Fs−��,�0�, �2��,�0� � Fs+��,�0� + F−��,�0� ,

�3��,�0� � F+��,�0� − Fs+��,�0�, �4���,�0� � F���,�0� + Fs���,�0� �48�

and

F���,�0� � �
0

	

dt��t�ei���0−��t = ��I�− �� �0��n�− �� �0� + 1���− �� �0� + I�− �− �� �0��n�− �− �� �0��

���− �− �� �0��� − i��
0

	

d��� 1

�� �0 + ��
I�����n���� + 1� + 
 1

�� �0 − ��
I����n������ , �49�

Fs���,�0� � �
0

	

dt���t�ei���0−��t = ��I��� �0��n��� �0� + 1����� �0� + I�− ��� �0��n�− ��� �0����− ��� �0���

− i��
0

	

d��� 1

�� �0 − ��
I�����n���� + 1� + 
 1

�� �0 + ��
I����n������ . �50�

It should be noted that the principal value integrals are included in Eq. �50�. The inhomogeneous term is given by

�� 2��� = 2i�
a�cA�+�1−��� + acA�−�1+��� − �a�2A�z��2−��� + �2+����
2a�cA�z�2+��� + a�2A�+�3−�t� − A�−�2c2�1+��� + �a�2�3+�t��
2acA�z�2−�t� + a2A�−�3+�t� − A�+�2c2�1−��� + �a�2�3−�t��
− acA�−�1+��� − a�cA�+�1−��� + �a�2A�z��2−��� + �2+����

� , �51�

where ��,������=1,2 ,3� are given in Appendix B.
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Next, we show a numerical evaluation of the susceptibil-
ity for the Ohmic coupling spectral function

I��� = s�e−�/�c, �52�

where s denotes the coupling strength and �c denotes the
cutoff frequency.

The concrete techniques used in the numerical evaluation
of the formula, Eq. �28�, are as follows. First, we avoided the
matrix inversion procedure in Eq. �27�. By rewriting the
complex susceptibility in the form

������ =
i

�
�B̂��,x�� �53�

with

x� � M
�

��
�A�
�0� +�� 2���� , �54�

we find that the essential task required in Eq. �28� is obtain-
ing the vector x� by solving the simultaneous equation for the
elements


i� +
i

�
M
�

S − M
�

2
����x� = �
�A�

�0� +�� 2���� . �55�

Second, in solving the above equation, we numerically cal-
culated the principal value integral in Eqs. �49� and �50� by
using a MATHEMATICA built-in function. Because this evalu-
ation should be performed carefully, we checked the results
by comparing them with those obtained by the trapezoidal
numerical integration method. In the present form of I���,
Eq. �52�, we have an analytically evaluated correlation func-
tion ��t�,

��t� =
s�c

2�1 − �c
2t2�

�1 + �c
2t2�2 +

2s

�2�2����1 +
1

���c
+

it

��


+ ���1 +
1

���c
−

it

��
� −

2is�c
3t

�1 + �c
2t2�2 . �56�

The function ���z�= d
dz��z� in Eq. �56� is defined by the di-

gamma function, ��z�= ���z�
��z� as in �46�. Using this form, we

also checked the above-mentioned numerical estimations of
the time integrals in Eqs. �49� and �50�. We confirmed that all
three of the estimations gave the same result.

Figure 1 shows the imaginary part of the transverse sus-
ceptibility �+−� ��̃�, found by using Eq. �28� as a function of
the frequency of the external field scaled by the Larmor fre-
quency of the spin �0, i.e., �̃�� /�0. We scaled the coupling
strength s and the cutoff frequency �c with �0 and set them
to be s=0.1 and �̃c��c /�0=0.5. We also set the tempera-
ture of the bath to be kBT=��0 /5. We study the three cases
of �=0, �4 , �2 , which determine the types of relaxation: the
case of �=0 corresponds to the adiabatic interaction case
�i.e., the pure dephasing case�, �= �

4 to the transverse relax-
ation case, and �= �

2 to the nonadiabatic interaction case.

Figure 1 shows that the width of the spectra decreases
with increasing �. This is explained as follows: for �=0, the
thermal bath affects the spin as a random magnetic field
along the z axis. The direction of this random magnetic field
tilts toward the x axis as � increases to �

2 .
We can explain this fact by remembering the relaxation

time obtained in the Markovian limit, where the transverse
relaxation time T2 is given by �47,48�

1

T2
=

1

2
� 1

T1
+

1

�0
 . �57�

Equation �57� was obtained for the system-bath interaction
as

H1 = �gS� · R� , �58�

where S� and R� are the relevant spin and bath operator, re-
spectively. The relaxation times T1 and �0 are given by

1

T1
= 2 Re��+− + �−+

� �,
1

�0
= 2 Re�zz, �59�

where

��� =
g2

4
�

0

	

dte�i�0t�R��t�R��0��,

�zz = g2�
0

	

dt�Rz�t�Rz�0�� , �60�

with R�=Rx� iRy. Comparing Eqs. �12� and �45� with Eq.
�58�, we find that the case of �=0 corresponds to gR�

= �0,0 ,gRz�= �0,0 , Ŷ� and �= �
2 to gR� = �gRx ,0 ,0�= �Ŷ ,0 ,0�.

When we consider an extreme case of �Rx�t�Rx�0��
= �Rz�t�Rz�0������ct�, we find that 1 /T2=1 /2�0=g2 /2�c for
�=0 and 1 /T2=1 /2T1=g2 /4�c for �= �

2 . This means that
the width of the transverse spectrum decreases with increas-
ing �, which essentially explains the physical origin of the
fact shown in Fig. 1.

It should be noted that the type of system-bath interaction
in Eq. �58� is different from the one in Eq. �12�, except for
cases where the thermal-bath operator R� is described as R�

= R̂n� with an arbitrary vector n� . Since the vector is written as
n� =z��x�� in the case of �=0 ��= �

2 �, we can consider the

� �

� �

� �

� �

�

χ +
-''

(ω~
)

� � �� � �� � �� � �

ω
~

Λ=π/4

Λ=π/2

Λ=0

FIG. 1. Transverse susceptibility �+−� ��� for kBT=��0 /5,
s=0.1, and �̃c=0.5 with changing � as 0 , �4 , �2 .
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above correspondence. While we can easily extend the

system-bath interaction to H1=�iX̂iŶi, as in Eq. �58�, we
chose the simple form of Eq. �12� for a demonstration.

In Fig. 1, we can see the higher frequency shift due to the
imaginary part of 2���. The detailed structures of the shifts
can be seen by comparing the results with and without the
effects of the initial correlation and the frequency shift in
Figs. 2–4. Since the broken �red� lines in these figures have
peaks at �̃=1, we find that the initial correlation and fre-
quency shift cause the spectra to shift to the higher frequen-
cies. The spectral shift and shape depend on the coupling
strength s̃ and a detailed analysis of this dependence will be
presented in a forthcoming paper.

B. Interacting spin-boson model

Next, we discuss the absorption spectra of interacting N
spins in contact with a bosonic bath, focusing our attention
on the types of spin systems that break the Heisenberg SU�2�
symmetry. These interactions cause shifts from the paramag-

netic resonance spectra called resonance shifts �36�. Typical
examples of such interactions are the anisotropic exchange
interaction and the dipole-dipole interaction. In these cases,
the Hamiltonian of the relevant system is as follows:

HS = ��0�
i

N

Si,z + Hex + HD, �61�

where Si,z denotes the z component of the ith spin and Hex is
the exchange interaction written by

Hex = − 2�J�
i,j

�Si,xSj,x + Si,ySj,y + ASi,zSj,z� , �62�

with exchange interaction energy J and anisotropy parameter
A. HD in Eq. �61� is the dipole-dipole interaction given by

HD = D�
i,j

1

rij
3 �Si · S j −

3

rij
2 �Si · rij��S j · rij�� , �63�

where rij is the vector from the spin i to the spin j, rij = �rij�.
In Eq. �63�, we define D=�0 /4���s�2, where �0 is the mag-
netic permeability and �s is the magnitude of the magnetic
moment that carries the relevant spin. When we consider an
electron�nuclear�-spin, we have �s=ge�B�gn�n�, where
ge�gn� is the g value of an electron �nuclear� and �B��n� is
the Bohr magneton �nuclear magneton�.

We can investigate the resonance shift due to these inter-
actions by considering how the spins interact linearly with a
bosonic bath, as

HSR = �X̂Ŷ , �64�

X̂ � �
i

N
1

2
�ai

�Si,+ + aiSi,−� + ciSi,z, �65�

Ŷ � �
�

g��b�
† + b�� , �66�

where we define ai=ei�2,i sin �1,i and ci=cos �1,i, which
control the interactions between the ith spin and the bath.

1. Two-spin system

When the relevant system consists of two spins, the spin-
spin interaction portion of Eq. �61� can be rewritten as

� �

� �

� �

� �

�

�

�

�

�

χ +
-''

(ω~
)

� � � �� � � �� � � �� � 	 �� � 	 �

ω
~


 � �  � � � � � � � � � � � � � �

 � �  � � � � � � � �

 � �  � � � � � � � �

 � �  � � � � � � � � � � �

FIG. 2. �Color online� The effects of the initial correlation and
frequency shift on the transverse susceptibility �+−� ��� for �=0.
The other parameters are the same as in Fig. 1. The solid �black�
line refers to the evaluation with the initial correlation and fre-
quency shift, the dot-dash �green� line refers to the evaluation with
just the frequency shift, the dotted �blue� line refers to the evalua-
tion with just the initial correlation, and the broken �red� line refers
to the evaluation without the initial correlation and frequency shift.
In this figure, we abbreviate the initial correlation as i.c. and the
frequency shift as f.s..

� �

� �

� �

� �

�

�

χ +
-''

(ω~
)

� � � �� � � �� � � �� � � �� � � �

ω
~

� � 	 
 � � 	 � �  � � � � � � � �
� � 	 
 � � � � � �  �
� � 	 
 � � � � � � � �
� � 	 
 � �  � � � � � � � �

FIG. 3. �Color online� The effects of the initial correlation and
frequency shift on the transverse susceptibility �+−� ��� for �= �

4 .
The parameters and notations of lines are the same as in Fig. 2.

� �

� �

� �

� �

�

χ +
-''

(ω~
)

� � � �� � � �� � � �� � 	 �� � 	 �

ω
~


 � �  � � � � � � � � � � � � � � �

 � �  � � � � � � � �

 � �  � � � � � � � �

 � �  � � � � � � � � � � �

FIG. 4. �Color online� The effects of the initial correlation and
frequency shift on the transverse susceptibility �+−� ��� for �= �

2 .
The parameters and notations of lines are the same as in Fig. 2.
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Hex + HD = ��S1,x, S1,y, S1,z��h11 h12 h13

h21 h22 h23

h31 h32 h33
��S2,x

S2,y

S2,z
� ,

�67�

where

hii � − 2�J + D0� i
2 − 1/3��, �i = 1,2�

h33 � − 2�AJ + D0� 3
2 − 1/3�� ,

hij � hji = − 2D0 i j, �i � j� , �68�

with D0�3D /2r12
3 �. Here we define

r12

r12
= � 1

 2

 3
� = �sin �12 cos �12

sin �12 sin �12

cos �12
� , �69�

where �12 and �12 are the angles of r12 in spherical coordi-
nates �see Fig. 5�.

We can show the dependence of the line shape on the
angle �12 when keeping �12=0. In Fig. 6, we show this effect
for the isotropic exchange interaction, A=1.0, and for the
weak dipole-dipole interaction, which is scaled by the Lar-

mor frequency of the relevant spin as, D̃0�D0 /�0=0.1. The

exchange interaction, which is scaled by the Larmor fre-

quency, is set to be J̃� J
�0

=−1. We set the scaled cutoff fre-
quency as �̃c=0.5 and the coupling strength as s=0.02. We
consider the type of spin relaxation to be pure dephasing by
setting �1,i=�2,i=0 with i=1,2. Figure 6�a� shows the case
of a lower temperature kBT=��0 /5, where we can see a
sharp peak, which shows a lower frequency shift as �12 in-
creases from 0 to �

2 via the magic angle �=arccos� 1
�3

��. For a
higher temperature, kBT=��0, we find that an additional
peak appears for �12=0 and �

2 to give asymmetric spectra in
Fig. 6�b�. In the evaluations for Fig. 6, we include the effects
of both the initial correlation and frequency shift, and find
the peak shifts as in the lower temperature case.

We can explain this peak shift behavior using quantum
mechanical evaluations. As typical examples, let us take two
cases of ��12,�12�= �0,0� and �� /2,0�, for which the inter-
action Hamiltonian Eq. �67� becomes diagonal. Defining
the elements of �hii� with i=1�3 as �h11,h22,h33�
=−2�Jx

eff ,Jy
eff ,Jz

eff�, respectively, we have for ��12,�12�
= �0,0�,

Jx
eff = Jy

eff = J − D0/3, Jz
eff = J + 2D0/3, �70�

and for ��12,�12�= �� /2,0�,

Jx
eff = J + 2D0/3, Jy

eff = Jz
eff = J − D0/3. �71�

Using the eigenvectors of Sz, �� �, which correspond to the
eigenvalues ���0 /2, we can obtain the eigenvalues and
eigenvectors of the system Hamiltonian, Eq. �61�, in the
form

Ea = ��− jz + K� ,

�a� =
1

�2K�K + �0�
��jx − jy��+ + � − �K + �0��− − �� ,

Eb = ��jz − jx − jy�, �b� =
1
�2

��+ − � + �− + �� ,

Ec = ��− jz − K� ,

�c� =
1

�2K�K + �0�
��jx − jy��+ + � + �K + �0��+ + �� ,

Ed = ��jz + jx + jy�, �d� =
1
�2

��+ − � − �− + �� , �72�

where we denote j�=J�
eff /2 with �=x ,y ,z, and K

=���0�2+ �jx− jy�2.
In Fig. 7, we show the dependence of the eigenvalues

Ẽm��Em /�� with m=a ,b ,c on the scaled dipole-dipole in-

teraction D̃0 for �12=0 and �12= �
2 . The other parameters are

the same as in Fig. 6. The solid �dashed� lines refer to the
energy eigenvalues for �12=0 ��12= �

2 �. Comparing the
eigenstates of the isotropic Heisenberg system, which are
obtained in the limit of D0→0, we can consider that the
states �a�, �b�, and �c� correspond to the triplet states,

FIG. 5. Angles in spherical coordinates for two spins S1 and
S2.

� � �

� � �

� � �

� � �

� � �

χ xx
''

(ω~
)

� � �� � �� � �� � �

ω
~

θ12=0

θ12=magic
angle

θ12=π/2

	 � �

� � 


� � �

� � 


� � �

� � 


χ xx
''

(ω~
)

� � �� � �� � �� � �

ω
~

θ12=0

θ12=magic angle

θ12=π/2

�  � � 

FIG. 6. Transverse susceptibility �xx� ��� by changing �12 from 0
to �

2 with �12=0. The other parameters were set as �̃c=0.5, s

=1 /50, D̃0=0.1, J̃=−1, and A=1.0. �a� shows the lower tempera-
ture case, kBT=��0 /5, and �b� shows the higher temperature case,
kBT=��0.
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�1,−1�, �1,0�, and �1,1�, respectively. �The state �d� corre-
sponds to the singlet state, �0,0�.�

The peaks in Fig. 6 reflect the transitions between the

triplet states for D̃0=0.1: the peaks in Fig. 6�a� correspond to
the transition between �b� and �c�. The solid �dashed� arrows
in Fig. 7 refer to the energy differences for �12=0 ��12= �

2 �
around D̃0=0.1. Due to the fact that the Ẽb and Ẽc for �12

= �
2 bend inside more than for �12=0, the length of the

dashed arrow is longer than the length of the solid arrow.
This means that the peak frequency for �12= �

2 is lower than
that for �12=0 in Fig. 6�a�. We also have the other type of
transition, between the triplet states, �a� and �b�. However,
the transition probability is very small in the lower tempera-
ture range, as in Fig. 6�a�. The amplitude becomes larger
with an increase in temperature, resulting in additional
peaks, which correspond to the transition between the triplet
states, �a� and �b� in Fig. 6�b�.

The peak shift of ESR due to the dipole-dipole interaction
in one-dimensional antiferromagnets was theoretically ex-
plained by Nagata and Tazuke �36�. They investigated the
absorption spectra by changing the direction of the magnetic
field H0 from H0 �c to H0�c. In experiments, the line shape
is usually given as a function of H0 but not the frequency �.
Therefore, we have to evaluate the dependence of the line
shape based on the strength of the static magnetic field,
rather than the frequency, as in Fig. 6. The correspondence is
discussed in Appendix C.

2. Three-spin system

We now discuss the effect of dipole-dipole interaction in a
relevant system with three spins �S= 1

2 � that form an equilat-
eral triangle. This is an extension of the Nagata-Tazuke shift
to a triangle system. We can find a typical example in the
antiferromagnetic triangular spin rings of Cu �49�. In order to
study the peak shift for these three spins, we incline the face
of the triangle from the yz plane to the xy plane by increasing
the angle �12 from 0 to �

2 with �12=0 and keeping the normal
of the triangle parallel to the x axis, as shown in Fig. 8.

Figure 9 shows the line shapes of transverse susceptibility,
which include the effects of the initial correlation and fre-
quency shift by system-bath interaction. Here we set the ex-

change interaction J̃=1, the dipole-dipole interaction D̃0
=0.1, the isotropic exchange interaction A=1.0, and kBT
=�0. We consider the spin relaxation type to be the pure
dephasing by setting �1,i=�2,i=0 with i=1,2. We find three
peaks in the cases where �12=0 and �12= �

2 . As �12 increases,
the higher peak shifts from right to left.

We can explain the peak shift behavior based on the angle
dependence of the energy levels of the relevant system.
These levels consist of the lower four levels in the quartet
states and the higher four levels in the doublet states, which
are almost degenerate. Figure 10 shows the dependence of
the lower quartet levels �a�d� on the scaled dipole-dipole

interaction D̃0 for �12=0 and �12= �
2 . The other parameters

are the same as in Fig. 9. The solid lines �arrows� refer to the
energy �differences� for �12=0 and the dashed lines �arrows�
refer to the energy �differences� for �12= �

2 . These arrows are

placed around D̃0=0.1, which corresponds to the case in Fig.
9. The length of the solid arrow between �c� and �d� is longer
than the dashed arrow between �c� and �d�. Since the transi-
tion probability between the lower energy levels becomes
higher for the relatively lower temperature, we can consider
that the highest peaks in Fig. 9 for �12=0 and �12= �

2 corre-
spond to the transition between �c� and �d� in the quartet

~

~

FIG. 7. The dependence of the eigenvalues Ẽm�=Em /�� with

m=a�c on the scaled dipole-dipole interaction D̃0 for �12=0 �solid
line� and �12= �

2 �dashed line�. The other parameters are the same as
in Fig. 6.

FIG. 8. Arrangement of three spins drawn as spheres.

� �

� �

� �

�

�

χ xx
''

(ω~
)

� � �� � �� � �� � �

ω
~

θ12=0

θ12=π/4

θ12=π/2

FIG. 9. Transverse susceptibility �xx� ��� when changing �12

from 0 to �

2 with �12=0. The other parameters are set as �̃c=0.5,

s=1 /150, D̃0=0.1, J̃=1, A=1.0, and kBT=��0.
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states. The fact that the length of the dashed arrow between
�c� and �d� is shorter than the length of the solid arrow be-
tween �c� and �d� shows the reason for the shift in the highest
peaks in Fig. 9. Similarly, the lengths of the arrows between
�a� and �b� show the shifts of the lowest peaks for �12=0 and
�12= �

2 .

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, we extend a linear-response formula to in-
clude the frequency shift and initial correlation between the
relevant system and the thermal bath. Using the projection
operator method, we show that the time evolution of the
response function can be described with a Nakajima-
Zwanzig type of equation. We transform the equation into
the Hilbert-Schmidt space to give a tractable formula where
the density matrices are described with vectors and the super
operators are transformed into matrices. The obtained for-
mula enables us to systematically study the line shapes for
various kinds of the system-bath interactions at arbitrary
temperatures. Moreover, with this formula it is easy to ex-
tend the relevant system to include multiple interacting spins.
We show the line shapes for a single and for two and three
interacting spins, which suffer from the environmental ef-
fects of a bosonic bath.

The obtained formula enables us to evaluate the spectra
including the following three effects: �1� the non-Markovian
effects of system-bath interaction, �2� the frequency shift by
the system-bath interaction, and �3� the effects of the initial
correlation between the relevant system and the thermal bath.

While �2� and �3� are often neglected, the roles of these
effects on the steady state of the reduced density operator
have been studied up to the second order of interaction �41�.
It has been pointed out that these effects are essential to
ensure the modification of the steady state by the system-
bath interaction and to prevent the steady state of the reduced
density operator from approaching the equilibrium state of
the relevant system. Since we need the stationary response to
the external oscillating field, it is necessary to include all of
these effects in the time evolution of the response function to
obtain the line shapes.

We apply the present formalism to spin systems interact-
ing with a bosonic bath. For a single spin system, we study
the dependence of the line shape on the type of system-bath
coupling, e.g., the pure dephasing case and the case of nona-
diabatic interaction. We find that the initial correlation and
frequency shift by the system-bath interaction are more sig-
nificant in the pure dephasing case than in the nonadiabatic
interaction case. For two- and three-spin systems, we dem-
onstrate the dependence of the line shape on the angle be-
tween the spatial spin arrangement and the direction of the
static field.

We compare the obtained complex susceptibility in this
paper with the conventional one in the Born-Markovian ap-
proximation in Appendix D. Evaluating the transverse sus-
ceptibility for the spin-boson model in the pure dephasing
case �a=0 and c=1 in Eq. �45��, we find that the frequency
shift and the initial correlation cause the considerable peak
shift which are not included in the conventional Born-
Markovian approximation.

Since the formula is written with the convolution integral
as a Nakajima-Zwanzig type of master equation, we can sys-
tematically extend the formula to the higher orders of pertur-
bation for the case of strong system-bath interaction �50,51�.
One of the authors studied this problem in a strongly coupled
spin-boson model and it was pointed out that the time evo-
lution of the transverse component of the spin was obtained
in a closed form on the assumption of nonadiabatic system-
bath interaction and a Lorentzian type of coupling spectral
function, which enables us to systematically obtain the ab-
sorption spectra including up to infinite orders of interaction.
In the present formula, a similar extension is possible. More-
over, the transformation into the Hilbert-Schmidt space en-
ables us to obtain a form of absorption spectra on demand,
even for the case of the interaction of multiple-spin systems
in any spatial arrangement. We hope that our formalism will
be a useful tool for analyzing the dynamics of various types
of interacting spin systems.
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APPENDIX A: DERIVATION OF EQ. (8)

We use the projection operator method to obtain the re-
duced dynamics of 
A�

�t�. However, it should be noted that
the reduced density operator 
A�

�t� is different from the or-
dinary reduced density operator. It is defined as 
�t�
�TrR W�t�=TrR e−iLtW�0�. Here W�t� denotes the density
operator of the whole system, which follows the Liouville
von-Neuman equation

~

~

FIG. 10. The dependence of the eigenvalues of the quartet levels

Ẽm�=Em /�� with m=a�d on the scaled dipole-dipole interaction

D̃0. The other parameters are the same as in Fig. 9. The solid line
represents �12=0 and the dashed line represents �12= �

2 .
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Ẇ�t� = − iLW�t� . �A1�

In this appendix, we show that we can obtain the master
equation for 
A�

�t� by focusing on the time evolution opera-
tor e−iLt and extracting the relevant part from it.

Let us define a projection operator P, which eliminates
the variables of the thermal bath, to obtain the relevant part
of the time evolution operator. The projection operator satis-
fies the idempotent relation, P2=P. We also introduce a
complementary operator Q�1−P. Here we follow the stan-
dard method for deriving the equation of motion of the re-
duced operator �19–21,50�. Denoting the relevant and irrel-
evant parts of the time evolution operator as

x�t� � Pe−iLt, y�t� � Qe−iLt, �A2�

with an initial time t0=0, we obtain

d

dt
x�t� = P�− iL�x�t� + P�− iL�y�t� , �A3�

and

d

dt
y�t� = Q�− iL�x�t� + Q�− iL�y�t� . �A4�

Equation �A4� has the following formal solution

y�t� = �
0

t

e−QiL�t−��Q�− iL�x���d� + e−QiLtQ . �A5�

Substituting Eq. �A5� into Eq. �A3�, we obtain

d

dt
x�t� = P�− iL�x�t� + P�− iL��

0

t

e−QiL�t−��Q�− iL�x���d�

+ P�− iL�e−QiLtQ . �A6�

We set the specific form of the projection operator to be
P=
R TrR, where 
R denotes the density operator of the ther-
mal bath, which is in the equilibrium state. When we multi-
ply Eq. �A6� by the initial density operator of the whole
system W�t0�, from the right-hand side, we obtain the ordi-
nary master equation for the reduced density operator 
�t�.
Instead of W�t0�, we could also multiply Eq. �A6� by

�Â� ,Weq�, which gives the master equation for 
A�
�t� in the

form

d

dt

A�

�t� = −
i

�
�HS,
A�

�t�� + �
0

t

d�!�t − ��
A�
��� + ��t� ,

�A7�

where the kernel !�t� and the inhomogeneous term ��t� are
given by

!�t� � P�− iL�e−QiLtQ�− iL� , �A8�

��t� � P�− iL�e−QiLtQ�Â�,Weq� . �A9�

Using the relations

e−QiLt = e−QiL0tT+ exp
�
0

t

dt�eiL0t�Q�− iL1�Qe−iL0t��
�A10�

and PL0=L0P, the kernel !�t� in Eq. �A8� is written as

!�t� = P�− iL�e−iL0tQT+

�exp
�
0

t

dt�eiL0t�Q�− iL1�Qe−iL0t��Q�− iL� ,

�A11�

which gives the expansion of the kernel !�t�=�i=2i�t�. In
Eq. �A10�, T+ denotes the time ordering operator from right
to left. Taking up to the second order in L1, we obtain

�
0

t

d�2�t − ��
A�
��� = �

0

t

d�P�− iL1�e−iL0�t−��

�Q�− iL1�
A�
��� , �A12�

where we use the relation PQ=QP=0.
The density operator of the whole system Weq in ��t� is

expanded as

Weq =
1

Z
e−��H0+H1� =

1

Z
e−�H0
1 − �

0

�

d�H1�− i��� + ¯� ,

�A13�

where

H1�t� = ei/�H0tH1e−i/�H0t. �A14�

Using Eqs. �A10� and �A13�, we obtain the expansion of
��t���i=1�i�t�. The low order terms are given by

�1�t� = 0, �A15�

�2�t� = P�− iL1�e−iL0tQ
Â�,− 
0�
0

�

d�H1�− i���� ,

�A16�

where 
0�1 /Z0e−�H0 with Z0�TrS+B e−�H0. To obtain Eq.
�A16�, we take up to the second order in H1 by expanding
the partition function Z for the total system as

Z = TrS+B e−��H0+H1�

= TrS+B e−�H0
1 − �
0

�

d�H1�− i��� + ¯�
= Z0 + TrS+B e−�H0
− �

0

�

d�H1�− i��� + ¯� .

�A17�

Using Eqs. �A7�, �A12�, and �A16�, we obtain the master
equation for 
A�

�t� in the form of Eq. �8�.

APPENDIX B: FUNCTIONS OF ��,±[�](�=1,2 ,3)

The explicit forms of ��,���� , ��=1,2 ,3� in Eq. �51� are
given as follows:

MASTER EQUATION APPROACH TO LINE SHAPE IN… PHYSICAL REVIEW E 80, 021128 �2009�

021128-13



�1,���� = cosh
���0

2 
��1 − e−������0��
���� �0�

�I��� �0��n��� �0� + 1����� �0� + I�− ��� �0��n�− ��� �0����− ��� �0���

− i��
0

	

d��
1 − e−����

���
�� 1

�� �0 − ��
I�����n���� + 1� −

1

�� �0 + ��
I����n������ , �B1�

�2,���� = e−���0/2
��1 − e−����
��

�I��� �0��n��� �0� + 1����� �0� − I�− ��� �0��n�− ��� �0����− ��� �0���

− i��
0

	

d���� 1 − e−�������0�

������0�
1

�� �0 − ��
I�����n���� + 1� −

1 − e�������0�

������0�
1

�� �0 + ��
I����n������ ,

�B2�

�3,���� = e���0/2
��1 − e−������0��
���� �0�

�I����n��� + 1����� − I�− ��n�− ����− ��� − i��
0

	

d����1 − e−�������0�

������0�
1

� − ��

�I�����n���� + 1� −
1 − e�������0�

������0�
1

� + ��
I����n������ , �B3�

�4,���� = 
��1 − e−�����2�0��
���� 2�0�

�I��� �0��n��� �0� + 1����� �0� + I�− ��� �0��n�− ��� �0����− ��� �0���

− i��
0

	

d����1 − e−�������0�

������0�
1

� − ����0
I�����n���� + 1� −

1 − e�������0�

������0�
1

� + ����0
I����n������ .

�B4�

APPENDIX C: CORRESPONDENCE
WITH THE ESR EXPERIMENTS

For a two-spin system, we found that the peaks of the
spectra moved to lower frequencies when �12 increased from
0 to �

2 . In order to compare the ESR experiment for one-
dimensional antiferromagnets by Nagata and Tazuke �36�,
we evaluated the spectra as a function of the magnitude of
the static magnetic field H0 for a given frequency � of the
oscillating field.

If a peak appears at �="H0+#� as a function of � �Fig.
6�b��, i.e.,

�peak�H0� = "H0 + #� , �C1�

a peak in the shape of a function of �,

H0
peak =

�peak

"
−
#�

"
, �C2�

where �peak /", gives the position of the paramagnetic reso-
nance. Therefore, the peak moves in the opposite direction
when we give the line shape as a function of H0. We give an
example in Fig. 11, where we adopted an oscillating field
with a constant frequency �

�J� =2. As the horizontal axis of the
figure, we scaled the magnitude of the static magnetic field

H0 with the magnitude of the exchange interaction energy,

H̃0=H0 /"�J�. We set the scaled exchange interaction energy

as J̃�� J
�J� =−1, the scaled cutoff frequency as �̃c���c / �J�

=0.5, the scaled coupling strength as s� s
�J� =0.02, and the

scaled strength of the dipole interaction as D̃0��D0 / �J�=0.1.
Since the case of �12=0 corresponds to H0 �c and �12= �

2 to
H0�c, we found that Fig. 11 shows the same feature as the
resonant shift studied by Nagata and Tazuke.

χ xx
''

(H
0

~
)

H0

~

θ12=π/ 2

θ12=0

FIG. 11. Transverse susceptibility �xx� ��� by changing �12 from

0 to �

2 with �12=0. The other parameters are set as J̃�=−1, �̃c�

=0.5, s=0.02, D̃0�=0.1, and A=1.0.
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APPENDIX D: BORN-MARKOVIAN APPROXIMATION

Let us show the relation between the formula in this paper
and the conventional one in the Born-Markovian approxima-
tion. First, in the Born approximation, after the transforma-
tion of s= t−� on the memory kernel Eq. �A12�, we replace
the time evolution of 
A�

�t−s� as eiL0s
A�
�t� �47,52�:

�
0

t

ds2�s�
A�
�t − s�

= �
0

t

dsP�− iL1�e−iL0�s�Q�− iL1�eiL0s
A�
�t�

= �−
i

�
2�

0

t

dsP�H1,�H1�− s�,
A�
�t��� . �D1�

Moreover, in the Markovian limit, we assume that the corre-
lation time of the bath is much shorter than that of the rel-
evant system, which means that we make the upper bound of
the integral in Eq. �D1� to be infinity �53�. The inhomoge-
neous term in Eq. �A7� can be neglected in the Markovian
limit �30�.

In these approximations, we have the time evolution of

A�

�t� in the form

d

dt

A�

�t� = −
i

�
�HS,
A�

�t�� − �
0

	

ds���s�X̂�X̂�− s�,
A�
�t��

−��− s��X̂�− s�,
A�
�t��X̂� , �D2�

which is written in the Hilbert-Schmidt space as

d

dt

�A�

�t� = −
i

�
M
�

S
�A�
�t� + M

�

Markov
�A�
�t� , �D3�

where M
�

Markov is given by

M
�

Markov = − �
0

	

ds���s��X̂X̂�− s� � 1 − X̂ � �X̂�− s�†���

+��− s��X̂�− s� � �X̂†�� − 1 � �X̂†X̂�− s�†���� .

�D4�

The complex susceptibility in the Born-Markovian limit is
obtained as

������ =
i

�
�B̂��,M

�

�
�A�
�0�� , �D5�

where we denote M
�

� as

M
�

� = 
i� +
i

�
M
�

S − M
�

Markov�−1

. �D6�

For the pure dephasing case in spin-boson model �a=0,
c=1, by setting �=0 in Eq. �45�� we obtain

M
�

Markov = −
�4+�0,0�

2 �
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
� . �D7�

The difference of the matrix elements of M
�

Markov with those
of Eq. �47� comes from the replacement of 
A�

�t−s� with
eiL0s
A�

�t�.
In the Born-Markovian approximation, the transverse sus-

ceptibility for pure dephasing case is given by

�+−��� =
− 2 tanh����0�

� − �0 −
i

2
�4+�0,0�

. �D8�

From the definition of Eqs. �48� and �50�, we find that the
part of principal value integral cancels in this case. This
means that the frequency shift is not included in the Born-
Markovian approximation for the pure dephasing case.

In Fig. 12, we compare the transverse susceptibility
�+−� ��� for �=0 of both of the cases Eqs. �50� and �D8�. The
former includes the effects of the initial correlation and fre-
quency shift �solid �black� line�, while the latter is given by
the Born-Markovian approximation �double dot-dash �or-
ange� line�. We find a considerable peak shift which reflects
effects of the initial correlation and frequency shift from the
Lorentzian line shape in the Born-Markovian approximation.

� �

� �

� �

� �

�

�

�

�

�

χ +
-''

(ω~
)

� � �� � �� � �� � �� � �

ω
~

� 	 
 � 	 � � �  � � � � � �

�  � � � � 	  � � 	 � 	 


FIG. 12. �Color online� Comparison of the transverse suscepti-
bility �+−� ��� for �=0 between the evaluation including the effects
of the initial correlation and frequency shift �solid �black� line� and
the evaluation in the Markovian limit �double dot-dash �orange�
line�. The other parameters are the same as in Fig. 2.
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